RankIQA: Learning from Rankings for No-reference **Image Quality Assessment** XIALEI LIU, JOOST VAN DE WEIJER, ANDREW D BAGDANOV

IMAGE QUALITY ASSESSMENT (IQA)

Definition: IQA algorithms must estimate objective image quality consistent with human evaluation.

Problem: Hard to train CNN-based methods due to absence of large datasets for IQA.

Main observation: While human-annotated IQA data is difficult to obtain, it is easy to generate images *ranked* according to image quality.

DATASETS

- LIVE: 808 images generated from 29 originals using five distortion types.
- **TID2013**: 3000 images generated from 25 originals using twenty-four distortion types.
- Waterloo and Places2: High quality images used to generate ranked image sets.

EVALUATION PROTOCOLS

EXPERIMENTAL RESULTS

- Linear Correlation Coefficient: A measure of the linear correlation relationship.
- Spearman Rank Order Correlation Coefficient: A measure of the monotonic relationship.

1 2 3 4 -5 (a) JPEG (b) GN (c) GB (d) JP2K

Outputs of RankIQA for different types.

RANKIQA: LEARNING FROM RANKINGS

- **Classical Approach**: Train a deep CNN regressor *directly* on the ground-truth.
- Our approach: Train network from an image ranking dataset (ranked images can be generated by applying distortions of varying intensities), then fine-tune a regression network on labeled IQA data.

						1								
LCC	JP2K	JPEG	GN	GB	FF	ALL	LCC		JP2K	JPE	G GI	N	GB	ALL
PSNR	0.873	0.876	0.926	0.779	0.87	0.856	RankIQA+FT (V	Vaterloo)	0.975	0.98	6 0.9	94	0.988	0.982
SSIM [35]	0.921	0.955	0.982	0.893	0.939	0.906	RankIQA+FT (Places2)	0.983	0.98	3 0.9	93	0.990	0.981
FSIM [42]	0.91	0.985	0.976	0.978	0.912	0.96	Table 2 PankIOA on different datasets							
DCNN [17]	-	_	-		_	0.977								
DIVINE [21]	0.922	0.921	0.988	0.923	0.888	0.917	Method	#01	#02	#03	#04		#24	ALL
LIINDS-II [23]	0.935	0.968	0.98	0.938	0.896	0.93	BLIINDS-II	0.714	0.728	0.825	0.358		0.856	0.550
BRISQUE [19]	0.923	0.973	0.985	0.951	0.903	0.942	BRISQUE	0.630	0.424	0.727	0.321		0.800	0.562
CORNIA [40]	0.951	0.965	0.987	0.968	0.917	0.935	CORNIA-10K	0.341	-0.196	0.689	0.184		0.903	0.651
CNN [11]	0.953	0.981	0.984	0.953	0.933	0.953	HOSA	0.853	0.625	0.782	0.368		0.905	0.728
SOM [43]	0.952	0.961	0.991	0.974	0.954	0.962	Baseline	0.605	0.468	0.761	0.232		0.742	0.612
DNN [2]	_	_	_	<u></u>	_	0.972	RankIQA	0.891	0.799	0.911	0.644		0.768	0.623
RankIQA+FT	0.975	0.986	0.994	0.988	0.960	0.982	RankIQA+FT	0.667	0.620	0.821	0.365		0.859	0.780

Table 1. Evaluation (LCC) on LIVE dataset.

Table 3. Evaluation (SROCC) on TID2013 dataset.

Comparisons with the state-of-the-art on different datasets.

SIAMESE NETWORK FOR RANKING

We use the pairwise ranking hinge loss:

$L(x_1, x_2; \theta) = \max\left(0, f(x_2; \theta) - f(x_1; \theta) + \varepsilon\right)$

To compute the backpropagation of 3 pairs, 3 images are passed through the network *twice*.

To compute the backpropagation of 3 pairs, 3 images are passed through the network *once*.

Siamese	Fast Siamese	Speed-up
of distortions are $n^2 - n$	 <i>n</i> levels of distortions passes are <i>n</i> 	 <i>n-1</i> times <i>n=M</i> (mini-batch size)

Standard

• *n* levels

passes a

0.15

Comparison of sampling methods is as follows,

